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The molecular mechanism of polyethylene crystallization in solution is revisited within the framework of
the bundle model [Allegra G, Meille SV. Adv Polym Sci 2005;191:87]. Previous SANS/IANS results [Sadler
DM, Keller A. Science 1979;203:263; Spells SJ, Sadler DM. Polymer 1984;25:739; Stamm M, Fischer EW,
Dettenmaier M, Convert P. Faraday Disc Chem Soc 1979;68:263] from partially deuterated samples are
used. It is proposed that the chain deposits on the growing lamella under the form of compact crystalline
domains, their size being = /M. The radius of gyration of the crystallized chain agrees with a model
consisting of a linear sequence of crystalline domains connected by chain segments with random
orientations. It is suggested that the whole chain is in a bundle meta-stable equilibrium and collapses in
the vicinity of the growing lamellar edge, then crystallizing around secondary nuclei. Compactness of the
crystalline domains is correlated to prior chain collapse in the liquid state. The observed proportionality

to /My of the crystalline domain size is approximately explained.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The molecular mechanism of polymer crystallization has been
the subject of a considerable debate in the last decades. Whether
from the melt, from solution or from the glass, under flux or under
quiescent conditions, the issue of polymer crystallization has
attracted much interest, both for its scientific and for its techno-
logical aspects [1-3]. An increasingly large body of experimental
results [4-26] has been investigated through theoretical and
simulation approaches, frequently complementing one another
[10,11,27-53].

We shall concentrate on a few aspects inherent with quiescent
crystallization of linear polyethylene from solution, that may be
summarized by the question: What is the molecular mechanism of
polyethylene crystallization in solution?

In the following, after reviewing concisely some relevant
experimental information (Section 2), we provide elements to
clarify that question. In Sections 3 and 4 we revisit the “bundle
model” previously proposed by some of us [30-33], and in Section 5
we illustrate the molecular mechanism of crystallization from the
bundle state of the chain. After a general discussion (Section 6)
where structural proposals from other Authors are comparatively
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reviewed [2-9,19,22,23,35-39,48], concluding remarks follow
(Section 7).

2. SANS/IANS diffraction data from solution-crystallized
samples: model and structural considerations

The following results were obtained by two Groups of Authors,
both of them by SANS-IANS neutron scattering on partially
deuterated, un-fractionated polyethylene samples (My,/M; roughly
around 2) with different molecular weights M,,. All the samples
were crystallized at 60-70 °C from o-xylene solutions.

In Fig. 1 we show the “stacked-sheet” model proposed by
Stamm, Fischer et al. and the corresponding comparison between
experimental and calculated diffraction plot; the calculations were
carried out by the same Authors [9]. In Fig. 2 we show a similar
comparison of Kratky plots obtained by Spells and Sadler [7] from 4
samples with different molecular weights, with the diffraction
spectra calculated by us (see Appendix A) from “stacked-sheet”
models analogous to those of the previously quoted Authors [9].
Fig. 3 gives the SANS radius of gyration (Rg) from melt- and solu-
tion-crystallized, partially deuterated samples [4-8]; the solution
results are dominated by the chain dimensions parallel to the plane
of the lamellae [5]. The experimental results reported in Figs. 1-3
will represent the basis of our following analysis.

In Fig. 2, the stem arrangements (domains) shown in the right-
hand side are to be regarded as averages; each chain is assumed to
consist of spatially uncorrelated domains. Consistent with the
observed fold length of about 100 A for this undercooling degree
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Fig. 1. Kratky plot from a partially deuterated polyethylene sample and corresponding
structure of the crystalline domain, as seen parallel to the stem axis. The labelled chain
is shown in heavy lines. (Taken from Ref. [9], authors Stamm, Fischer, Dettenmaier,
Convert).

(AT=Tp — Tc ~ 45 °C, Ty ideal melting temperature, Tc temperature
of crystallization [31]), each stem is a rod-like sequence of (-CH,-
CH,-) groups and is assumed to comprise about 80 C atoms; all the
stems are placed at the same height with respect to a horizontal
plane. The procedure to calculate the diffraction intensity is given
in Appendix A.

As shown in Figs. 1 and 2, all the diffracting domains - henceforth
(chain) crystalline domains - display a roughly similar shape, the
ratio between their average thickness and width showing a modest
increase with increasing overall size. Both the small distance from the
chain axis of the diffracting H and D atoms and the small deviation
from hexagonal symmetry of the stem axes in the orthorhombic unit
cell, turn out to be essentially irrelevant on the diffraction results in
the range 0 < q (= ((2m sin #)/(1))) < 0.25 A~!. The average direc-
tion of elongation of the domains is parallel to the crystallographic
direction (110) for orthorhombic PE [4]. We see that ngem does not
increase in a direct proportion with the molecular weight M,,. Fig. 4
shows a double-logarithmic plot of My, VS. gmax Showing an
approximate linear dependence, leading to the following power law:

6
40
£ 30"
4 [ o
N 21
U x
ol e
2r 1 i
o
i i
0 0.25
q(A™)

Fig. 2. Comparison between experimental Kratky plots reported by Spells and Sadler
[7] from partially deuterated PE samples and the diffraction spectra calculated
assuming the crystalline domain structures reported at right (see Appendix A for the
calculations).
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Fig. 3. SANS radius of gyration (Rg) from melt- and solution-crystallized, partially
deuterated samples (solution data taken and reported by Sadler, Keller, Spells, see Refs.
[4-8]). Note the difference between melt-crystallization (unperturbed chains) and
solution crystallization (unperturbed chains).

(Gmax) 2 *Nstem =0.22-M%; a = 0.50 + 0.03. (1)

Notice that the (approximate) shape similarity among the Kratky
plots, suggesting analogous similarity among the crystalline chain
domains is exploited, suggesting (gmax) > * Nstem; We point out that
(gmax) 2 has the dimensions of a surface and ngem is proportional to
the domain area projected along the stem axis. Eq. (1) may be
summarized by

Nstem = vV Mw (1)

It should be stressed that ngeer, is an average for the particular My,.
Eq. (1) is independently validated by the following comparison
among the calibrated peak intensities shown in Fig. 2. Let us first
divide the Kratky peak intensity qupeak by Iq%stem, OT the intensity
diffracted by a single stem at the same q; we thus obtain the peak
intensity diffracted from material points lying in a plane approxi-
mately orthogonal to the stem axes, each point replacing a whole
stem. As shown theoretically by Guinier [20] and experimentally
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Fig. 4. Correlation between the g-coordinate at the peak of the Kratky plot, and M,,,

from Figs. 1 and 2. The experimental point enclosed in a square is from Fig. 1 (Ref. [9]),
the other points from Fig. 2 (Ref. [7]). Error bars are shown.
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validated for isolated straight chains of deuterated dotriacontane
C32Dg by Spells and Sadler (see Fig. 5 in Ref. [7]), Iq%tem iS .
Consequently we have

Iq%educed, peak — Iqlzneak/lqgtem x {qu/q}peak = Iqpeax (2)
We show that the reduced intensity Igpeax is expected to be
proportional to the average stem numbers per crystalline domain
Nstem. IN fact, supposing at first that the whole sample reduces to
a single crystalline domain, in the limit g — 0 the diffraction
amplitude should be proportional to ngem and the diffracted
intensity Iqpeak should be proportional to (Nstem)®. Assuming
a uniform crystallization degree for all the samples, with the
same polymer mass in each sample, the number of chain crystal-
line domains - each of them having a polymer mass «ngenyn — is
o 1/nstem. Therefore the reduced intensity Igpeak is o (Nstem)? x (1/
Nstemn) = Nstem fOr ¢ — 0. If the crystalline domains are large enough
that the g-values at their peaks are sufficiently close to zero, this
conclusion is approximately valid and we have Igpeak = Nstem. This
result appears to be validated by Fig. 5, where both the reduced
peak intensities Iqpeax (from Fig. 2, on the ordinate) and the stem
numbers ngem (evaluated from the peak profiles of Fig. 2, on the
abscissa) are the same as in Fig. 2. As it may be seen, Fig. 5 shows
a substantial proportionality between Igpeak and ngtem.

We point out that the diffracted intensities from the sample
investigated by Stamm and co-workers [9] are not in the same scale
as the data reported by Spells and Sadler [7], so that they cannot be
used to fit into Fig. 5.

3. The chain model in the crystalline state:
the radius of gyration

Experimental values of the radius of gyration (Rg) of crystallized
chains were obtained by Sadler and Keller by SANS experiments [4-
6]. Sedimented lamellar stacks were examined, the normal to the
lamellae being approximately parallel to the beam direction.
Therefore the results of R; reported in Fig. 3 approximately corre-
spond to the projection of the radius of gyration along the stem axis
of the crystalline domains, all of them being parallel among
themselves [6]; see Fig. 6 showing a sketchy model of the crystal-
lized chain. The crystalline domains are assumed to be sequentially
connected by chain segments, whose conformation is restricted by
lamellar spatial constraints. Although with a small probability,
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Fig. 5. Correlation between Iqpeax = qupeak/qpeak (see text) from the experimental data
reported in Fig. 2. Error bars are shown.

Fig. 6. Scheme showing crystalline domains produced by one chain inside a lamella
and the characteristic average dimensions L, lgomain, lchain, S€€ text.

crystalline domains of one chain might appear in different crys-
talline lamellae of the same lamellar stack [4-7].

Denoting with n. the number of (-CH;-) units per crystalline
stem, the mass of a crystalline domain is given by 14 ngtem-nc Da,
and the average number of domains per chain is given by

14 nstem * Nc
Although » is not bound to be an integer, we shall formally regard it
as such. As shown in Fig. 6, the connecting chain segments are
supposed to be attached at opposite ends of the longer average
dimension of each crystalline domain lgomain.

Neglecting end effects and considering the projection along
the stem axis, see Fig. 6, for each of the » domains we define
a vector L that spans the domain itself plus the chain segment
connecting with the following domain. For simplicity - and with
no effective consequence on the calculated diffraction - in Fig. 6
we ignore the crystallographically ordered placement of the
stems within the lamella. We see that L is (lgomain + lchain)s
where lgomain adjoins the two ends of the crystalline domain
and lcpain is the end-to-end vector of the connecting chain
segment. Assuming absence of correlation between these
vectors, we have
2 =

2
léomain +lghain§ lgomain = <ld0main>§
= (1?). (4)

For two different crystalline domains we also assume (L;-L;) =0,
i # j. We end up with a freely jointed chain consisting of » statis-
tically equivalent units, or pseudo-atoms, connected with (v — 1)
uncorrelated pseudo-bonds; each unit has a mean-square length 2.
The root-mean-square radius of gyration Ry is given by [see
Ref. [27], Ch1, Eq. (15), {s?)g — Rg, n— (w+1)]

\/* 11/71 (5)

As shown in Fig. 3 and Table 1, a reasonable fit with the experi-
mental data is obtained by taking the (uniform) length of the
connecting chain as Ichain = 82 A. Note that, regarding this chain as
fully stretched, we have 82/1.27 =65 (-CHy-) groups, i.e., a little
less than one stem with 80 (-CH,-) groups. If the connecting chain
is regarded as unperturbed the number of (-CH;-) groups is about
4 times larger. The relatively strong packing forces acting on the
crystalline domains during lamellar crystallization may suggest

2 2
lcham = (lchain>§ L
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Table 1

Parameters to evaluate the plot of Ry vs. M2, see Fig. 3. Distances are given in A, lchain =82 A and n. = 80.

M, n Mw lgomai / / R (obs
w stem v = TV E— domain L = lﬁomain 4 lghain Rg(ca]c) — é 2 V_ 1 g( )

29.000 1 235 26.0 86.0 48.7 <60

103.000 21 4.38 32.0 88.0 73.2 ~75

189.000 30 5.63 34.0 88.8 84.7 ~90

386.000 40 8.62 37.0 90.0 1071 ~100

that the connecting chains approach full extension. In any case, for
our purposes the contribution of these chain segments to the
observed diffraction should be negligible, as the main-peak
diffraction region (q < 0.25 A~ see Fig. 2) is dominated by inter-
ference effects between parallel stems. We believe the most
significant conclusion of our analysis is that it predicts Rg to
increase very slowly with My, in agreement with the data of Fig. 3.
In fact Ry increases roughly as /v (see Eq. (5) and Table 1) and in
turn » goes like My /Nstem ~ (Mw)l/z, see Eq. (3), so that in conclu-
sion we have

Rg=My/* (6)

a result that is basically consistent with Fig. 3.

It should be pointed out that Eq. (6) cannot hold at very high
degrees of chain collapse. In fact, in the limit of a single crystalline
domain1 /czomprising the whole chain, density considerations dictate
Rg = My~.

4. The polymer chain in a bad solvent

It was already proposed by us [30-33] as well as by other
Authors, most notably Muthukumar [36-38], that polymer crys-
tallization is preceded by aggregation of chain segments into small
pre-crystallization nuclei. In a sufficiently dilute solution these

entities were regarded by us as intramolecular and denoted as
bundles, see Fig. 7 [30-33]. The bundle state of the chain is to be
regarded as meta-stable, its free energy being intermediate
between the highest-energy free-chain state in solution and the
lowest-energy crystalline state (T < Tp). Crystal formation proceeds
from deposition of bundles onto a growing lamellar surface, see
Fig. 7c. If the molecular length is below some limit, the probability
of bundle formation is very small, as the chain is unable to create
enough attractive interactions - both with itself and with the
crystalline surface - to overcome the free-energy barrier con-
trasting fold formation. Under these circumstances the chain is
rejected, i.e., segregated from the crystallization front [1-9,27-31].
It was shown that along these considerations a quasi-quantitative
agreement between experimental evidence and statistical-
mechanical predictions of chain segregation can be reached [31].
The statistical properties of the PE chain in the bundle state
were described by one of us through a perturbative Grand Partition
Function approach, assuming that any bundle represents a minor
structural modification from the ideal solution state. The average
chain fold length was evaluated starting from two different
assumptions, namely Model A and Model B [31], later adopted
again with relatively minor changes to achieve mathematical
simplification [32,33]. Here it will be sufficient to stress that Model
A-bundles comprise a three-stem core with shorter surrounding
stems, see Fig. 7b. Conversely, in Model B-bundles, in addition to

Fig. 7. (a) Schematic representation of a “free” chain; (b) a chain with bundles; (c) a chain with a few bundles, collapsing in the vicinity of a lamellar surface. Chain atoms are
roughly shown by dots, dashed lines in (b) stand for van der Waals’ attractions between stems. Dashed vertical lines in (c) represent chain stems on the sidewall of a crystalline

lamella.



G. Allegra, A. Famulari / Polymer 50 (2009) 1819-1829 1823

the three-stem restriction, there are additional restrictions on the
stem lengths, that may be roughly summarized as leading to
a uniform stem length [32]. More complex bundle models,
comprising more than one package of parallel stems inter-
connected by chain folds, proved to be hardly relevant from
a statistical viewpoint and are disregarded here [32]. Considering
that the original paper was published on a Journal currently dealing
with non-polymeric subjects, and that some aspects of the matrix
algebra were originally omitted [31], we report the statistical
approach here again in Appendix B.

Fig. 8 shows the results of the average stem lengths (N¢)
(number of C atoms per stem) and of stems per bundle (nstems), for
both Models at different temperatures <Ty. We see that both
quantities stay finite at all temperatures. On the contrary, in the
limit T — Ty the average length of the bridges between the bundles
(npy) goes to infinity [see Eq. (17B)] because the positive free energy
contribution u goes to zero, see Eq. (4B). In the same temperature
limit the (average) lamellar thickness also goes to infinity because
the lengths of the bundle folds and of the inter-bundle bridges tend
to average out through a reeling-in mechanism. The bridges are
eventually absorbed inside the bundles producing an average
crystalline structure. Comparison with the experimentally
observed initial fold length of the lamellar crystals is satisfactory
[33].

We point out that the bundled chain is in a bad solvent, there-
fore tending to a collapsed state; the solvent would become ideal at
the ideal temperature T — Tp=113 °C, much larger than those at
which the diffraction experiments were carried out (60-70 °C). The
bundles are reciprocally repelled by the expanded, structurally
irregular chain folds, which prevent them from fusing together. We
believe the chain statistical results reported in Appendix B - orig-
inally evaluated ignoring bundle-bundle repulsion - are not
significantly affected by the bad solvent effect, as the corresponding
repulsive, solvent-mediated forces are relatively mild.

5. The molecular mechanism of crystallization

In the meta-stable bundle state the chain undergoes local
statistical fluctuations, with a dynamic interchange of chain
segments between the bundles and the inter-bundle bridges. On
account of the collapse [48-52] the chain cannot overlap in space
with other chains and is essentially confined within a volume, its

N
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Fig. 8. Average number of stems per bundle ((nstem)) and of C atoms per stem ((N¢)) at
different temperatures, for Models A and B (see Appendix B, Eqgs. (18B) and (19B),
1 = 0.36 kcal/mol; 7 is the attractive van der Waals’ energy per C---C interaction within
a bundle, see Appendix B.) (Figure derived from Fig. 4, Ref. [31]).

shape depending on the contacting solid surfaces. The chain may
crystallize if it comes in contact with suitable irregularities on
a solid surface, possibly holes or expansions, acting as crystalliza-
tion nuclei (see two crystallizing chains approaching the side
surface of a growing lamella in Fig. 9a). Each nucleus gives birth to
a chain crystalline domain; the average dependence of the number
v of such domains from the chain molecular weight My, [empirically
given by Eq. (3)] may be rationalised as follows.

We assume the chain crystalline domains, as seen orthogonal to
the stems, may be regarded as fragments of a virtual circle with
radius R; the molecular weight M is proportional to the circle area,
so that M « R?. The circumference length C = 2R may be regarded
as the overall length of contact between the crystallizing chain and
the growing lamella. The number » of the domains, equal to the
number of nuclei, is taken to be proportional to C, and we have

vocCocM1/2; nstem“M/VO‘M1/27 (7)

where the same dependence is expected for vayerage and (Nstem)average
if we substitute the average M,, for M. We point out that we also have
the same dependence of nsiem = (Nstem)average VS Mw through our
analysis of WANS/SANS results see Egs. (1)-(1’) in Section 2.

An interesting issue correlated wit Eq. (7) is: what is the chain
average molecular weight (M,y) that produces a single crystalline
domain/chain (v=1) and what is its size (nstem)? Taking the cor-
responding quantities (M =29.000, ngem= 11, »=2.35) from
Table 1 and Fig. 2, we have from Egs. (7) My = 5.250, Ngtem = 4.7,
v = 1.0 as an admissible combination. We notice that the resulting
figure of ngtem (average number of stems per crystalline domain) is
close to the figure theoretically evaluated at 60-70 °C for (ngtem)
(average number of stems per bundle) with realistic parameters,
see Fig. 8. It is tempting to conclude that the smallest crystalline
domains derive from crystallization of single bundles, and that
shorter chains will be unable to crystallize (chain segregation) [1].

During deposition of the crystalline domain of one chain onto
the growing lamella (see Fig. 8a, dashed-line contour), a second
chain may initiate its own deposition in a contiguous region
(Fig. 9a, continuous-line contour). Crystalline domains from
different chains may be incorporated in the same lamella at
different times. As it may be seen in Fig. 9b, assuming that the
lamellar edge remains basically straight at different times, crys-
talline domains from different chains may be incorporated into the
lamella, with no predictable regularity. The coordinate of the
lamellar edge along its normal axis is proportional to the crystal-
lization time, assuming constant rate of crystallization.

The average resulting shape of the crystalline domains is elon-
gated parallel to the (110) crystallographic directions, in agreement
with morphological evidence, in particular lamellar decoration
results suggesting a significant probability for adjacent chain folds
along this direction [25]. Crystal-packing forces should be

', jfmzz’\i_
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Fig. 9. a) At time t: Two chains projected on the lamellar plane. The dashed-line chain
forms first and generates a crystalline domain after interaction with the lamellar
surface. b) At time t' > t: From two chains we have two sets of crystalline domains,
their orientation being along (110).
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responsible for this as well as other structural aspects; in particular
we point out that this elongation increases the number of favour-
able van der Waals’ interactions between the stems of the domain
under formation and those of the pre-formed lamella.

6. Discussion
6.1. From bundles to chain crystalline domains

According to the bundle theory [30-33], chain molecules in
solution - to some, very limited extent in the molten state as well
[33] - give rise to intramolecular associations, or “bundles”, see
Fig. 7. They may be regarded as “nematic precursors” of the poly-
mer crystals, according to Muthukumar [38,48].

At temperatures of about 60° or 70 °C the “bundled” PE chains
are well below the limiting dissolution temperature Ty in o-xylene
(=113 °C [54]). Consequently, each chain experiences a strong
tendency towards collapse, which may be hindered by an insuffi-
ciently large molecular weight at a given temperature [49-52].
Steric repulsion between the individual bundles, mainly due to the
relatively loose and irregular chain folds, hinders full collapse to
a compact structure, as the chain still retains a substantial amount
of solvent. However, as hinted in Fig. 9a, the collapsed chain
structure prevents any chain-chain overlap. In the vicinity of the
growing lamella, crystallization is originated by interaction of chain
segments with suitable lamellar irregularities, or nuclei, see Fig. 9a
and b. Assuming a uniform probability of nucleation per unit length
of the contacting lamellar edge, both the average number of the
crystalline domains and their average molar mass are « M2, see
Eq. (7). These conclusions appear to be in essential agreement with
the SANS-IANS Kratky plots from partially deuterated samples
obtained by Spells and Sadler [7] and by Stamm et al. [9]. Indeed,
denoting by nsem the average number of stems per crystalline
domain, both (i) the power-law dependence nstem « (1/
@%peak) * Mi? for 29.000 < M,y < 380.000 (Fig. 4) and (ii) the pro-
portionality between ngtem, and the weighted peak intensity (Fig. 5),
support the approximate proportionality of ngem with MY/?. This
result appears to be further supported by comparison of the radius
of gyration R, observed by Sadler and Keller through SANS exper-
iments [4-6], with a bead-and-spring model of the crystallized
chains predicting Rg o MJY/? see Fig. 6 and Table 1. As shown in Fig. 3,
the experimental data are consistent with our model, taking a root-
mean-square length of the connecting segments of about 80 A. In

Fig. 3 experimental data are also reported for melt-crystallized
chains, suggesting in that case the unperturbed dependence
Rg o MY2. From the general expression of the mean-square radius
of gyration

1 .
Rz = 6CO(,<1\1CHZ>1%_C, (Nep,)=Mw/14, Ic_c = 1.54A, (8)

we derive the reasonably acceptable value of the characteristic ratio
Cw» =9. Since polymer bulk crystallization is generally thought to
produce only limited, local rearrangements of the crystallizing
chains [33], the last result nicely confirms general consistency of
the data reported.

A rather obvious question, not mentioned yet to this point, is:
since there is no compelling reason to have an identical structure
for all the crystalline domains produced by the chains in a sample
with a given M,,, what is their statistical distribution? Although
structural investigation of this issue is beyond the limits of this
study, in Fig. 10 we show as an example the effect of the domain-
shape variation on the diffraction profile, under the constraint that
the total number of stems is invariant. Apart from the largest peak,
additional diffraction bumps or holes appear to be smoothened by
the averaging effect. Analogous results were obtained by us for the
samples with M, =29.000 and 189.000, see Fig. 2.

6.2. The superfolding model [7,35]

Spells and Sadler [7] and Sonntag et al. [35] carried out
a detailed diffraction profile analysis on the basis of a Markov-type
statistical model of the stem-sheets distribution along the (110)
crystallographic direction, allowing for correlation between adja-
cent sheets, i.e., superfolding. We point out that their approach
cannot be extended as such to our statistical model. In fact, with our
model the crystalline domains are essentially compact, with no
voids inside. As a result we have a qualitative discontinuity with
any low-order Markov-type description based on a linear statistical
distribution of stems along (110) sheets, although ingenuously
modified to account for sheet-sheet correlation, or superfolding
[35]. In principle, an appropriate statistical distribution should also
be considered within our model; in fact, not all the compact
domains must be identical, see the example reported in Fig. 10.
However, because of the compactness it would be easy to show that
any Markov-type statistical description would require a large
number of probability parameters.

Nyiem=21 M,,=103000

Fig. 10. Kratky plots from three different domain structures with the same number of stems ng.n. The average plot (continuous line) is smoother than the separate plots.
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As an additional remark - with another difference from the
model considered by the British Authors [7,35] - the compactness
of the crystalline domains makes it impossible to have any dilution
among them. However we may assume that some dilution is
possible, so that a few stems not belonging to a tagged chain are
present inside the domains shown in Figs. 1 and 2. We remark that
the good correlation between the peak intensities shown in Fig. 5
dictates that the degree of dilution should be about the same for the
4 samples shown. More generally, the dilution assumption is in
contrast with the molecular mechanism here proposed. In the
assumption of many chains/domain, even the present satisfactory
interpretation of the observed radius of gyration (see Figs. 3 and 6)
would be made inconsistent by the requirement that all the crys-
talline domains should be connected by a complex framework of
interconnecting chains.

6.3. The degree of adjacent chain folding

From the schemes reported in Figs. 1 and 2, showing the stem
distribution in space, we evaluate an average probability Py = 0.85
for a stem to be followed by another stem within the same crys-
talline domain. Identifying P with the probability of adjacent chain
folding along the crystallographic direction (110), our result
appears to be larger than the figure Py = 0.75 suggested by Spells
and Sadler [7] and by Sonntag et al. [35] on the basis of both
neutron scattering and IR [23] results. However, if more irregular
stem arrangements also contributing to the statistics were taken
into consideration (see Fig. 10, e.g.,), the estimated figure of Pa
would decrease towards 0.8 or less. As a conclusion, we believe the
previously estimated figure Py = 0.75 is not inconsistent with our
statistical description.

6.4. Orientation effects on the diffraction profiles

In the quoted paper [7], Spells and Sadler suggest that their
diffraction results (see Fig. 2) should be corrected for orientation
effects, as the lamellar mats in their samples are closely orthogonal
to - i.e., the chain stems closely parallel to - the diffraction beam.
Such a preferential orientation may cause systematic deviations of
the observed scattering intensity at low g-values, compared with
the isotropically oriented sample that is assumed in our diffraction
calculations. Since all the peak intensities reported in Fig. 2 corre-
spond to very low g-values, this remark should apply to all their 4
samples [7]. Accepting this remark as a significant warning, we
point out that: the g-coordinate of Spells-Sadler peak intensities as
well as their peak shapes appear to be consistent with those of the
Stamm-Fischer-Dettenmaier-Convert sample, which are free of
preferred orientation [9]. For this reason, and also considering the
relatively large error bars affecting the g-peak coordinate (see Figs.
4 and 5), we carried out the present analysis on the assumption that
the orientation effects inherent with Spells-Sadler’s samples could
be regarded as essentially random errors.

6.5. Other models of polymer crystallization

In the following we shall analyze concisely a few significant
aspects of relevant model approaches to polymer lamellar
crystallization.

Based on both experimental results and on computer simula-
tion, the analysis carried out by Muthukumar is very detailed,
encompassing several kinetic aspects [37,38,48]; one important
aim is to provide verification of the Lauritzen-Hoffman theory
[2,3]. Some of his ideas and conclusions concerning lamellar
formation appear to be consistent with some of our viewpoints (see
in particular the “baby nuclei”, “smectic pearls” and ‘“nematic

precursors” [38]). The Author points out that, during the growth
stage of the lamellar crystal, there are a variety of competing meta-
stable states, and analyzes the subtle mechanisms by which they
are frustrated by the conformational energy barriers [48].

Hu and Frenkel [29] investigated several aspects of polymer
crystallization using a simple lattice model, through lattice statis-
tics, Monte Carlo simulations and phase diagrams. The Authors
suggest that single-chain crystallization is easiest if the polymer
undergoes a previous coil-to-globule transition, and the tempera-
ture is not so low that the globule has reached a glass-like state.

Among several investigations on the subject [42-44], Yamamoto
carried out a realistic computer modelling of 3D crystallization
from the melt [46]. Investigation of the crystallization process of
a single polymer chain in a vacuum on the crystalline substrate was
carried out. Modelling of chain crystallization from the melt
unexpectedly produced tapered lamellae, with a thickening growth
along the chain axis accompanying the usual growth perpendicular
to it.

Common aspects of the above discussed models, including our
own, are: i) lamellar chain crystallization develops through
a variety of non-equilibrium states and is a non-equilibrium state
by itself, ii) some sort of driving force towards chain collapse is at
the base of the whole process.

Strobl [18] proposed an interesting, general model of polymer
crystallization, see Fig. 11. It is based on the assumption that
a precursor mesomorphic layer solidifies into a “granular” layer,
eventually producing the lamellar crystal. Apart from the different
origin — Strobl’'s model derives from observation of the hexatic
phase in n-alkanes [23] — we see formal analogies with the model
proposed in this paper, after translating our chain superbundle into
Strobl’s mesomorphic layer and our crystalline domains into Stro-
bl's granules. In spite of these analogies, we wish to stress that one
basic aspect of our model is that each crystalline domain belongs to
a single chain.

7. Concluding remarks

We stress three general remarks from the present study on
solution crystallization of PE chains.

First, the present model can interpret rather satisfactorily the
observed difference between the radius of gyration of melt- and
solution-crystallized chains, see Fig. 3 and Table 1. In particular, the
solution-crystallized chains - the object of the present investiga-
tion — appear to be remarkably collapsed with respect to the melt-
crystallized chains, essentially unperturbed as far as the radius of
gyration is concerned. In turn, this reflects the collapse of the
bundled chain before crystallization, see Fig. 9.

Second, each chain crystallizes under the form of compact
crystalline fragments. With reference to Fig. 9a, after formation of
the bundled, collapsed chain, solvent still swells the chain. Upon
crystallization we have solvent expulsion and formation of

A

granular crystal layer

lamellar crystal mesomorphic layer

-~ «
solidification by

block mergi
ock merging a structural transition

Fig. 11. The polymer crystallization model proposed by Strobl [18].
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crystalline fragments, or domains, each of them originating from
a secondary nucleus, see Fig. 9b. Assuming the probability of
formation of the secondary nuclei along the lamellar edge to be
independent of the molecular weight, the average number of
crystalline stems within each domain (ngem) turns out to be
proportional to the square root of the molecular weight [see Eq.
(7)), in basic agreement with observation. The overall number of
crystalline domains is between 2 and 9 for M,, between 30.000 and
400.000, see Table 1. The experimentally observed radius of gyra-
tion Rg, see Fig. 3, is reasonably well explained by a statistical model
whereby the crystalline domains and their connecting chain
segments are uncorrelated in space (see Fig. 6 and Table 1). We
point out that the intramolecular compact structure of the crys-
talline domains is also strictly correlated with the collapsed state of
the chain before crystallization. Compact, collapsed chains cannot
overlap in space; as a consequence they produce non-overlapping
domains upon crystallization.

The third remark, from extrapolation of the data reported in
Figs.1 and 2, is that the smallest observable crystalline fragments -
comprising about 5 parallel stems for polymer samples with
My, =5.000 - are rather close in size to the single bundles in the
pre-crystalline chain (about 8.5 or 5.5 stems for Models A and B
respectively, see Fig. 8). As a reasonable conclusion, we suggest that
i) the smallest crystalline domains derive from single bundles and
that ii) chains much shorter than about 5.000 Da (about 350 C
atoms) cannot crystallize according to the presently discussed
mechanism (chain segregation).
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Appendix A. Calculation of the scattered intensity

We deal with the intensity scattered by a random mixture of
deuterated/hydrogenated PE chains. The algorithm used by us to
evaluate the Kratky plots by sets of parallel polymer stems is very
simplified. We checked it to be adequate in the reciprocal coordi-
nate range under investigation [0 < (=4 sinf/A)<0.25A"!]
comparing the results with more precise calculations. The scat-
tering centres are identified with pseudo-atoms repeating after
a constant distance of 1.27 A along straight lines coinciding with
the stem axes, 100 scattering centres being placed on each stem;
the scattering by atoms belonging to chain folds is neglected. The
parallel stem axes are disposed according to a hexagonal setting —
a rough approximation to the monoclinic, pseudo-hexagonal
structure of PE - and the scattering centres have the same axial
coordinates in all the stems. Defining an integer i going from 1 to
the total number n-100 of scattering centres, we have (q < 1) [9]

ns-100n-100 4 arsin (g - ds+
2 qsin(q
¢ 1(q)=C-(bu—bp)* > > %
i=1 j=1 y
2 2 2 2msind
di =4+ (zi-2)" 9= 5
where by, bp respectively are the scattering lengths of hydrogen
and deuterium, dj is the distance between C atoms, 20 is the
diffraction angle and A the wavelength. The i-th C atom coor-
dinate along the stem axis is z; and 4;; is the distance between
the stem axes where the atoms i and j belong. For all the stems
we have the same set of z; coordinates. The sum in Eq. (1A) is

(1A)

extended to all the stems of the crystalline domain, see Figs. 2
and 10 for examples.

Appendix B. The statistical properties of the crystallizing
chain

In the following we summarize the statistical-mechanical
equilibrium approach first proposed in Ref. [31] and utilized further
by some of us [32,33].

We assume the polymer system to consist of a single, extremely
long chain with N (>1) identical chain atoms, in a bad solvent. At
the limiting dissolution temperature Ty the chain is regarded as
unperturbed, long-range interactions being absent. At this
temperature the partition function of a N-bond chain (N > 1) may
be written as

Zo = Z(T = To) = S Owexp( — ) = (1)
[Qn, En] respectively being the multiplicity factor and the energy of
the generic conformational state of the chain. We shall assume that,
for each conformation, the energy Ey is defined with respect to the
energy of the chain in solution at T=Ty.

At T< Top, (To — T) < Tp, the chain is able to partly crystallize; its
partition function Zy(T) increases above AN, due to the negative-
energy terms correlated with crystallization. We assume that the
chain undergoes a pre-crystallization state — that we identify with
the bundle state - before full-fledged, lamellar crystallization is
achieved. In the bundle state the relative amount of monomer units
involved in crystal-like (i.e., attractive) van der Waals’ interactions
is small, which makes it convenient to express Zy(T) in a perturba-
tive form:

ZN(T) = Zno + > _ Qplexp(—Ep/kgT) — exp( — Ey/kgTp)].  (2B)
b

the sum being carried out over the bundle configurations of the
chain. Here we stress that any bundle-like chain configuration at
the crystallization temperature T (see Fig. 7) is already counted in
the partition function Zyg, except for the different temperature [i.e.,
T < Ty for Zn(T), T=To for Zyo]. Although the present approach was
initially devised for a chain with bundles interconnected with
randomly oriented, unperturbed bridges [31], we believe it may be
extended with a reasonable approximation to the superbundle
model, wherein each bundle is in van der Waals contact with its
neighbours, still retaining its identity.

We follow the Grand Partition Function approach, specifically
adopting Model A utilized by one of us in Ref. [31]; the [-CH-|n
chain will be schematically modelled as a sequence of identical
atoms with an average bond angle of 180°, see Fig. [7] as an
example. In view of Egs. (1B) and (2B) may be written as

[

T :sz”;ﬁ” exp(—N)

= i {zN+ZQ§—f[exp(—Eb/kBT)— EXP(—Eb/kBTO)}}?
N=1 b

Z=exp(—u), (3B)

where E(T) is the GPF of the chain ensemble, —kgT 1 (u > 0) is the
free energy per bond, u a chemical potential and b is the number of
bonds comprised in the generic chain bundle, see Fig. 7b. [In Eq. (3B)
the term 2" in curly brackets stand for the completely free-chain
state (E,=0).] As shown in the figure, the chain configuration is
always viewed as an alternation of bridges (i.e., free-bonds
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sequences)and bundles; bundle associations involving distant chain
atoms will be disregarded in view of their negligible probability.

Let us consider first the free-bond sequences, i.e., the bridges
between bundles, see Fig. 7b. Labelling with n the number of chain
atoms comprised therein, and with n(min) their minimum value
their grand statistical weight is

wo 5 oot
#= . T 1-z
n=n(min)

_ exp[—p-n(min)] _exp[—p-n(min)]
C1—exp(—p) 0

where the assumption is made that the undercooling degree
(To—T)/Tp is sufficiently small compared with unity that (0<)
n<l

The bundle structure will be regarded as statistically emanating
from a central core consisting of 3 stems of identical length (7 chain
atoms), see Fig. 7. Specifically, an additional stem may be added to
the central core provided that

: (4B)

i) it produces hexagonal packing with two core stems,
ii) it is connected fold-wise to one of these core stems,
iii) it is as long as, or shorter than, the core stems, i.e., it
comprises n < 71 chain atoms.

The process will be repeated in an endless fashion, i.e., each time
a stem is added to the bundle provided it is no longer than either
stem it packs with. As a result, following the chain contour the stem
lengths n; will obey the rule:

N <ny<nz<...<Mg g =M, = Nq[=T]
>Ny 2 Nyyp > ...0p (5B)

We see that, except for the terminals, each stem is connected by
a chain fold to two stems in the same bundle; no stem may be
longer than the core stems (7 chain atoms).

Before evaluating the Grand Partition Function (see Eq. (3B)), we
turn now to the bundle structure (see again Fig. 7), evaluating
separately the GPF contributions of:

a) the chain folds; b) the bundle core consisting of 3 identical
stems; c) the extra-core stems.

We proceed in a sequence:

a) The Grand Partition Factor of the folds is given by

o(w) = Y P(n,Av)-exp(—u-n), (6B)

n=m(min)

where P(n,Av) is the probability of closure - within a small volume
Av - of a “ring” comprising n chain bonds. In the freely jointed
chain approximation P(m,Av) Av/(l~m)3/2 and we have

=)

o) =Q >

m=m(min)

exp(—p-mym—>3/2, (7B)

where Q is a pure number proportional to Av/®> (we take Q=1).
With linear PE, at current temperatures the minimum number of
chain bonds for ring closure is roughly m(min)=15-20 [31].

b) The bundle core consists of three stems with identical length,
each comprising a variable number 7 of chain atoms
(1 <n< «). We assume that the chain continuity is main-
tained within the core, so that two chain folds are required, one
at each opposite end, as shown in Fig. 7b. The corresponding
Grand Partition Factor is

K(@,T,n) = |exp(—3u-7i+3n-/ksT)/ 2" |92 (1) /2, (8B)

where 7 is the packing energy per (CHy)---(CH) contact. It is
convenient to construct a diagonal matrix K(T,x) summarizing this
result for different values of 7:

K(1,T, ) 0 0 0
0 K(2,T,p) 0 0
K(T,u) = 0 0 K(3,T,p) 0 |
0 0 0 T

K(4,T,u)

(9B)

where a convenient upper limit for 71 is around 20.

c) Denoting the length (i.e., number of chain atoms) of any non-
core stem with the symbol n, considering that each atom feels
two packing interactions with previously placed stems of the
bundle, the GPF of the stem is

H(n,T.0) = [exp( — un+2n-n/ksT) /2" p(1).

It is convenient to construct a square matrix H where the row index
is given by n (i.e., the atom length of the stem) whereas the column
index equals the atom length of the previously placed stem: with
reference to (5B), if p(<k — 1) is the number index of the stem being
considered, the number index n; of the previously placed stem is
p + 1. Supposing that the length of the (p + 1)th stemis n’, the (n, n’)
element of H is given by

(10B)

Hn,n') = (n' —n+1)[exp(— p-n+2n-n/kgT)/3"Jo(n) (11B)

The multiplicity factor (n’ — n + 1) is equal to the number of ways of
placing a shorter stem (length: n chain atoms) over a longer stem
(n’ chain atoms). The structure of the resulting matrix is:

H(1,1) 2H(1,1) 3H(1,1) 4H(1,1)
0  H(2,2) 2H(2,2) 3H(2,2)

H=| © 0 H(3,3) 2H(3,3) ... 12B
0 0 0 H(4,4)

(The zero-elements reflect the prohibition of placing any stem
adjacent to a shorter stem.) We are able now to evaluate the Grand
Partition Factor of the bundles ®(T,u). We have

0(T,n) = O(T,u) — O(To, u) (13B)
where
1
~ 1
OT,u) =[1111..] H(T,u)-K(T,u) -H(T,u)| 1 (14B)
1

where pre- and post-multiplication by unit line and column
vectors stands for the sum over bundles with all possible stem
lengths.

Evaluation of averages from the Grand Partition Function

As shown in Fig. 7b, the polymer chain is represented by
a sequence of independent parts, namely the bridges and the
bundles. Consequently, denoting with { and 0 the corresponding
Grand Partition Factors (GPF), we may write for Z(T), see Egs. (3B)
and (13B):
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_ g
100

(We remark that the right-hand side is a function of the chemical
potential y, in addition to the temperature T.) It is convenient to
introduce the fixed-point constraint of infinite chain length, that
leads to

E(T) = -0+ 02+ 0>3+... (15B)

1-0:6 =0 O(T.m)-Lw) =1, (16B)
where { and ¢ are defined in Egs. (4B) and (13B). From (4B) the

average chain atom length of the bridges between bundles is

() = ~230% = n(min + 1)

where n(min) is negligible with respect to the second term for
small undercooling degrees, i.e., 4 — 0. Analogously, from Eq. (13B)
we have the average number of chain atoms in the bundles:

oln (T, u
() =~ (188)
whereas the average number of stems per bundle is

dln O(T, w)
<Nstem> - W 17 (193)

where ¢(u) is the GP Factor of a stem-connecting fold, see Eq. (7B).
Similarly, all the relevant bundle averages may be evaluated.

We point out that with the present formalism we have
described a statistical model (denoted by us as Model A) where
the bundle probability is approximated by excess because the fold
probability is regarded as constant no matter whether the atoms
directly connected in neighbouring stems are at the same height
or not (see Fig. 7b). Another model, denoted as Model B, was also
considered by us [31], which suffers from the opposite limitation.
Namely, the terminal C atoms of the stems connected by a fold are
constrained to stay in contact; as a consequence, all the numerical
factors larger than unity in the matrix H (see Eq. (12B)) are
reduced to 1. It is possible to show that Model B may be
approximated in turn by keeping all the bundle stems of identical
length [32,33].
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